
Building External Modules

Contents

Intro
How To

Required Tools
Downloading the kernel source
Choosing the correct kernel release
Using an old kernel config
Setting the correct version
Prepare the source and compile

OS specific resources
CentOS
Fedora
RHEL
Ubuntu

Introduction

There may come time in life when one would find benefit in compiling kernel modules outside
of the running kernel. This is known as compiling external or out of tree modules. In the case
of 	LiME	, compiling outside of the running kernel is a more forensically sound and secure
method, as the kernel object is not compiled on the target system. Since there is no need to
compile on the target systems, Admin's do not have to alter the production systems to include
gcc, linux kernel headers, among other development tools. This link includes the kernel
documentation on how to build an external kernel module.

NOTE This guide does not cover 	cross	compiling	 external modules. If your architecture
differs from your host machine you will need to cross compile your module.

How to

The following is a step-by-step guide, using Ubuntu, in order to compile your own external
module. The steps will vary from each distribution. Some distribution specifics will be covered
at the end of this document.

Required tools

#intro
#howto
#tools
#download
#release
#config
#versioncorrect
#compile
#resources
#centos
#fedora
#rhel
#ubuntu
https://www.kernel.org/doc/Documentation/kbuild/modules.txt

You will need the following tools

git
build-essential package OS specific

Downloading the kernel source

The first task is to find and download the correct kernel source for your distribution and
version. For this I will show you examples with the Ubuntu kernel. You can read Ubuntu's
fancy guide for downloading source here.

But here is the TL;DR version

In order to determine the correct OS version of your target machine, you can run 	cat
/etc/os-release	.

$	cat	/etc/os-release	
NAME="Ubuntu"
VERSION="16.04.2	LTS	(Xenial	Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu	16.04.2	LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial

From the output above we can see that our release is 	Xenial	16.04.2	LTS	.

Now we must go and clone the source using 	git	. For our Ubuntu example the links are in the
following format.

kernel.ubuntu.com/ubuntu/ubuntu-<	release	>.git

Following our Xenial example, we would clone the source by entering this

$git	clone	git://kernel.ubuntu.com/ubuntu/ubuntu-xenial.git

https://wiki.ubuntu.com/Kernel/Dev/KernelGitGuide

If you have firewall restrictions or other ridiculousness using the git protocol, you can clone via
http.

$git	clone	http://kernel.ubuntu.com/git-repos/ubuntu/ubuntu-xenial.git	

This will be a lot slower and you will not be able to set the history depth, therefore
downloading far more data.

Choosing the correct kernel release

Once the repository has finished cloning, we will need to checkout the correct kernel release.
To complete this task run 	uname	-r	 on the target machine.

$uname	-r
4.10.0-38-generic

This most important take-away of the kernel release is the string after the 	sublevel	 digit. The
Linux kernel is versioned in the following format

version.patchlevel.sublevel-localversion

From the example above we can see that our local version needs to be 	-38-generic	. Once
you have determined the version that you need to build, change directory into your kernel
source. From this location run

git	tag	-l

to list all the tags. Find the tag that matches you kernel version version.patchlevel.sublevel and
checkout that the point in history.

git	checkout	<	tag	>

Following our Ubuntu guide you would run something like the following

git	checkout	Ubuntu-lts-4.10.0-9.11_16.04.2

Using an old kernel config

In order to build an external modules that will fit target running kernel, we need to know how
your kernel was built. The kernel build process stores this information in a config file, storing
that in 	/boot/config-*	.
Copy the correct config file to your kernel working directory and then rename it to 	.config	. In
our Ubuntu example the correct config file is located/called

/boot/config-4.10.0-38-generic

Once you have renamed the config file 	.config	 run the following

$	make	olddefconfig
		HOSTCC		scripts/basic/fixdep
		HOSTCC		scripts/kconfig/conf.o
		SHIPPED	scripts/kconfig/zconf.tab.c
		SHIPPED	scripts/kconfig/zconf.lex.c
		SHIPPED	scripts/kconfig/zconf.hash.c
		HOSTCC		scripts/kconfig/zconf.tab.o
		HOSTLD		scripts/kconfig/conf
scripts/kconfig/conf		--olddefconfig	Kconfig
#
#	configuration	written	to	.config
#

This make function will use the old kernel config and substitute the default values for options
that differ in your kernel.

Setting the correct version

This is the most important part of the entire process. If the version does not match the running
kernel, your module will most likely fail to install. This is due to a kernel safety measure,
enabled by default, to prevent incompatible modules from loading.
Once the config completes, we need to make sure that all the versions match before we
continue. Run the following make function

$	make	kernelrelease

4.10.0+

Did make complete without error? Does that match the version you want? If so continue; else
checkout a different tag with git.

Did you notice that our kernel release is missing the 	localversion	 string? Well, let's fix that
using your favorite text editor.
Find the lines that say the following

#
#	General	setup
#
CONFIG_INIT_ENV_ARG_LIMIT=32
CONFIG_CROSS_COMPILE=""
#	CONFIG_COMPILE_TEST	is	not	set
CONFIG_LOCALVERSION=""
#	CONFIG_LOCALVERSION_AUTO	is	not	set
CONFIG_HAVE_KERNEL_GZIP=y

Change both 	CONFIG_LOCALVERSION	 and 	#	CONFIG_COMPILE_TEST	is	not	set	 to match the
following example

CONFIG_LOCALVERSION="<	localversion	>"
CONFIG_LOCALVERSION_AUTO=n

In our Ubuntu example add 	-38-generic	 and don't forget the hyphen.

CONFIG_LOCALVERSION="-38-generic"
CONFIG_LOCALVERSION_AUTO=n

Now! run 	make	kernelrelease	 again

$	make	kernelrelease
4.10.0-38-generic+

Is your localversion correct? If so, continue
Note the 	+	 at the end of the localversion string. We need to remove this

touch	.scmversion

to create and empty file. Now run 	make	kernelrelease	 once more, this time the version
should be an exact match.

$	make	kernelrelease
4.10.0-38-generic

Prepare the source and compile

Now run

$	make	modules_prepare

in order to prepare the kernel source tree for building external modules. We use this function in
order to skip compiling an entire kernel, saving you some cycles. If this completes without
error, one can proceed with compiling the module. We will use LiME as the example module.
Change directory into your LiME source and run

make	-C	<	path-src-tree	>	KVER=<	kernel-version	>	M=$(pwd)

	path-to-src-tree	 is the location where you cloned your kernel source. Again, following our
Ubuntu example

make	-C	/home/kd8bny/ubuntu-xenial	KVER=4.10.0-38-generic	M=$(pwd)

And there you have it! A successfully compiled external kernel module. Now feel free to load
this into the running kernel on your target machine.

OS specific resources

CentOS

CentOS and RHEL package source a little differently. The source is packaged as an RPM. This

is a semi-helpful link.
The source is located here. Browse to the following location and download.

http://vault.centos.org/<	cent	version	>/os/Source/SPackages/kernel-3.10.0-123.el7.src.rpm

Once you have downloaded the RPM extract it using 	tar	 or some other file archiving tool.
Once extracted you will see another archive dubbed 	linux-<version>	. This is your source,
extract it. You can use the config files already found in this source. Continue as stated in the
guide, ignoring the use of 	git	.

Fedora

Fedora keeps kernel source off the main linux git tree. Clone it here

git://git.kernel.org/pub/scm/linux/kernel/git/jwboyer/fedora.git

Follow the same process in the guide.

RHEL

Follow the centOS section, as this is where the source is located for non-subscribers. If you
are a subscriber, you can download the source from Red Hat.

Ubuntu

Follow as shown in guide.
kernel source

https://wiki.centos.org/HowTos/I_need_the_Kernel_Source
http://vault.centos.org/
http://kernel.ubuntu.com/git/

